

D. Rajesh and D. Ramesh. / International Journal of Engineering and Robot Technology. 1(1), 2014, 36 - 40.

Available online: www.uptodateresearchpublication.com January – June 36

 Research Article ISSN: 2395 – 5597

ACCES PATTERN USING DATABASE INFORMATION NOT PRESEN T IN CACHE

D. Rajesh*1 and D. Ramesh2

*1Department of Computer Science Engineering, Universal College of Engineering and Technology, Tamilnadu, India.

.

INTRODUCTION 1

Cache Memory
A cache is a component that transparently stores data
so that future requests for that data can be served
faster. The data that is stored within a cache might be
values that have been computed earlier or duplicates
of original values that are stored elsewhere. If
requested data is contained in the cache (cache hit),
this request can be served by simply reading the
cache, which is comparatively faster. Otherwise
(cache miss), the data has to be recomputed or

ABSTRACT
Private Information Retrieval (PIR) is one of the fundamental security requirements for database outsourcing. A
major threat is information hacking form database access patterns generated by query executions used by the
data base server. The standard private information retrieval schemes which are widely regarded as theoretical
solutions, entail o(n) computational overhead per query for a data base with n items. Recent works propose to
protect access patterns by introducing a trusted component with constant storage size. The resulting privacy
assurance is a strong as private information retrieval (PIR), through with o(1) online computation cost, they still
have o(n) amortized cost per query due to periodically full database shuffles. In this paper, we design a novel
scheme in the same model with provable security, which only shuffles a portion of the database without storage,
the amortized server computational complexity is reduced than previous algorithm. Our scheme can protect the
access pattern privacy of database of billions of entries, at lower cost.

KEY WORDS
PIR- Private Information Retrieval, ISP-Internet Service Provider and DNS-Domain Name System.
.

Author of correspondence:

D. Rajesh,
Department of Computer Science Engineering,
Universal College of Engineering and Technology,
Tamilnadu, India.

Email: rajeshd936@gmail.com

International Journal of Engineering
and

Robot Technology

Journal home page: www.ijerobot.com

D. Rajesh and D. Ramesh. / International Journal of Engineering and Robot Technology. 1(1), 2014, 36 - 40.

Available online: www.uptodateresearchpublication.com January – June 37

fetched from its original storage location, which is
comparatively slower.
Operations of cache
Hardware implements cache as a block of memory
for temporary storage of data likely to be used again.
CPUs and hard drives frequently use a cache, as do
web browsers and web servers.
A cache is made up of a pool of entries. Each entry
has a datum (a nugget (piece) of data) - a copy of the
same datum in some backing store. Each entry also
has a tag, which specifies the identity of the datum in
the backing store of which the entry is a copy.
When the cache client (a CPU, web browser,
operating system) needs to access a datum presumed
to exist in the backing store, it first checks the cache.
If an entry can be found with a tag matching that of
the desired datum, the datum in the entry is used
instead. This situation is known as a cache hit. So,
for example, a web browser program might check its
local cache on disk to see if it has a local copy of the
contents of a web page at a particular URL. In this
example, the URL is the tag, and the contents of the
web page are the datum. The percentage of accesses
that result in cache hits is known as the hit rate or hit
ratio of the cache1.
The alternative situation, when the cache is
consulted and found not to contain a datum with the
desired tag, has become known as a cache miss. The
previously uncached datum fetched from the backing
store during miss handling is usually copied into the
cache, ready for the next access.
During a cache miss, the CPU usually ejects some
other entry in order to make room for the previously
uncached datum. The heuristic used to select the
entry to eject is known as the replacement policy.
One popular replacement policy, "least recently
used" (LRU), replaces the least recently used entry
(see cache algorithm). More efficient caches
compute use frequency against the size of the stored
contents, as well as the latencies and throughputs for
both the cache and the backing store2. This works
well for larger amounts of data, longer latencies and
slower throughputs, such as experienced with a hard
drive and the Internet, but is not efficient for use
with a CPU cache.

Database caching
Many applications today are being developed and
deployed on multi-tier environments that involve
browser-based clients, web application servers and
backend databases. These applications need to
generate web pages on-demand by talking to
backend databases because of their dynamic nature,
making middle-tier database caching an effective
approach to achieve high scalability and
performance. In three tier architecture, application
tier and data tier will be in different hosts.
Throughput of the application is affected by the
network speed. This network overhead shall be
avoided by having database at the application tier.
As commercial databases are heavy weight, it is not
practically feasible to have application and database
at the same host. There is lot of light-weight
databases available in the market, which shall be
used to cache the data from the commercial
databases.
APPLICATIONS OF CACHE
CPU cache
Small memories on or close to the CPU can operate
faster than the much larger main memory. Most
CPUs since the 1980s have used one or more caches,
and modern high-end embedded, desktop and server
microprocessors may have as many as half a dozen,
each specialized for a specific function. Examples of
caches with a specific function are the D-cache and
I-cache (data cache and instruction cache).
Disk cache
While CPU caches are generally managed entirely
by hardware, a variety of software manages other
caches. The page cache in main memory, which is an
example of disk cache, is managed by the operating
system kernel. While the hard drive's hardware disk
buffer is sometimes misleadingly referred to as "disk
cache", its main functions are written sequencing and
read perfecting. Repeated cache hits are relatively
rare, due to the small size of the buffer in
comparison to the drive's capacity. However, high-
end disk controllers often have their own on-board
cache of hard disk data blocks. Finally, fast local
hard disk can also cache information held on even
slower data storage devices, such as remote servers
(web cache) or local tape drives or optical jukeboxes.

D. Rajesh and D. Ramesh. / International Journal of Engineering and Robot Technology. 1(1), 2014, 36 - 40.

Available online: www.uptodateresearchpublication.com January – June 38

Such a scheme is the main concept of hierarchical
storage management3.
Web cache
Web browsers and web proxy servers employ web
caches to store previous responses from web servers,
such as web pages. Web caches reduce the amount
of information that needs to be transmitted across the
network, as information previously stored in the
cache can often be re-used. This reduces bandwidth
and processing requirements of the web server, and
helps to improve responsiveness for users of the
web. Web browsers employ a built-in web cache, but
some internet service providers or organizations also
use a caching proxy server, which is a web cache
that is shared among all users of that network3.
Another form of cache is P2P caching, where the
files most sought for by peer-to-peer applications are
stored in an ISP cache to accelerate P2P transfers.
Similarly, decentralised equivalents exist, which
allow communities to perform the same task for P2P
traffic, for example, Corelli.
Other caches
The BIND DNS daemon caches a mapping of
domain names to IP addresses, as does a resolver
library. Write-through operation is common when
operating over unreliable networks (like an Ethernet
LAN), because of the enormous complexity of the
coherency protocol required between multiple write-
back caches when communication is unreliable. For
instance, web page caches and side network caches
(like those in NFS or SMB) are typically read-only
or write-through specifically to keep the network
protocol simple and reliable. Search engines also
frequently make web pages they have indexed
available from their cache. For example, Google
provides a "Cached" link next to each search result.
This can prove useful when web pages from a web
server are temporarily or permanently inaccessible4.
Another type of caching is storing computed results
that will likely be needed again, or memorization.
Cache, a program that caches the output of the
compilation to speed up the second-time
compilation, exemplifies this type. Database caching
can substantially improve the throughput of database
applications, for example in the processing of
indexes, data dictionaries, and frequently used

subsets of data. Distributed caching uses caches
spread across different networked hosts, for
example, Corelli.
The difference between buffer and cache
The terms "buffer" and "cache" are not mutually
exclusive and the functions are frequently combined;
however, there is a difference in intent. A buffer is a
temporary memory location that is traditionally used
because CPU instructions cannot directly address
data stored in peripheral devices. Thus, addressable
memory is used as an intermediate stage.
Additionally, such a buffer may be feasible when a
large block of data is assembled or disassembled (as
required by a storage device), or when data may be
delivered in a different order than that in which it is
produced. Also, a whole buffer of data is usually
transferred sequentially (for example to hard disk),
so buffering itself sometimes increases transfer
performance or reduces the variation or jitter of the
transfer's latency as opposed to caching where the
intent is to reduce the latency. These benefits are
present even if the buffered data are written to the
buffer once and read from the buffer once. A cache
also increases transfer performance. A part of the
increase similarly comes from the possibility that
multiple small transfers will combine into one large
block. But the main performance-gain occurs
because there is a good chance that the same datum
will be read from cache multiple times, or that
written data will soon be read. A cache's sole
purpose is to reduce accesses to the underlying
slower storage. Cache is also usually an abstraction
layer that is designed to be invisible from the
perspective of neighboring layers5.

PROBLEM DESCRIPTION
Database access patterns leakage information during
query execution when the user is accessing the data
from the database. Unnecessary access of data from
the database leads to the leakage of information from
the data bases. Malicious server access the data from
the trusted component delays the trusted user in
accessing the data. Repeated use of queries in
accessing the data leads to the storage overhead in
the trusted component. The storage overhead in the

D. Rajesh and D. Ramesh. / International Journal of Engineering and Robot Technology. 1(1), 2014, 36 - 40.

Available online: www.uptodateresearchpublication.com January – June 39

trusted during accessing the data from the database is
reduced without using the cache storage.

EXISTING SYSTEM
Private information retrieval (PIR) protocol allows a
user to retrieve an item from a server in possession
of a database without revealing which item they are
retrieving. PIR is for the server to send an entire
copy of the database to the user. There are two
problems in PIR, one is to make the server
computationally bounded and the other is there are
multiple non-cooperating servers, each having a
copy of the database. Length-Flexible homomorphic
public key encryption technique all the users uses the
same modulus for generating the key pairs. A
threshold decryption protocol is used to handle
messages of any length. This leads to higher
computation cost and there is no support of trusted
hardware component. Reducing the server
computation in private information retrieval holds
the server database and linear computation is
performed. In order to avoid this problem PIR with
preprocessing is applied. This approach before
processing the queries the database server computers
and stores the data as a polynomial. PIR
preprocessing reduces the communication and

computation cost. Not feasible to preprocess and
store in the database.

PROPOSED SYSTEM
Access pattern using the database without cache
storage uses line of search and a novel PIR scheme,
an approach reduces the malicious database server in
accessing the data, and avoids the database from full
shuffles. Security is enhanced by encrypting the
database and shuffling the partial database. Line of
search reduces the complexity and removing the
cache storage from the trusted component reduces
the storage overhead.
Evaluation of Database Scheme
A database is a collection of information that is
organized so that it can easily be accessed, managed,
and updated. Database consists of sensitive
information of the particular systems. Only
authorized users can be able access the sensitive data
from the database using access patterns.
Unauthorized users can also access the sensitive data
from the database due to insufficient security of the
database system. For increasing the privacy of the
database private information retrieval (PIR) schemes
are implemented (Figure No.1).

 Database Host (H)

Figure No.1: Architectural diagram

Database D

D1

D2

.

.

Dn

Cache

Holds

K

Items

Session Ds Trusted T

Session

User 2

User 3

User 4

User 5

User n

User 1

D. Rajesh and D. Ramesh. / International Journal of Engineering and Robot Technology. 1(1), 2014, 36 - 40.

Available online: www.uptodateresearchpublication.com January – June 40

CONCLUSION
A novel scheme to prevent database access patterns
from being exposed to a malicious server. By virtue
of twin-retrieval and partial-shuffle, our scheme
avoids full-database shuffle and reduces the
amortized server computation complexity. Although
the hierarchy-based ORAM algorithm family can
protect access patterns with at most cost O(log2),
they are plagued with large constants hidden in the
big-O notations. With a modest cache k=1024, our
construction outperforms those poly-logarithm
algorithms for databases of 3*1010 entries. In
addition, our scheme has much less server storage
overhead. We have formally proved the scheme’s
security following the notion of PIR and showed our
experiment results which confirm our performance
analysis.

ACKNOWLEDGEMENT
I have taken efforts in this project. However, it
would not have been possible without the kind
support and help of many individuals and
organizations. I would like to extend my sincere
thanks to all of them.
I would like to express my gratitude towards my
parents and member of Universal College of
Engineering and Technology for their kind co-
operation and encouragement which help me in
completion of this project.

I would like to express my special gratitude and
thanks to industry persons for giving me such
attention and time.
My thanks and appreciations also go to my colleague
in developing the project and people who have
willingly helped me out with their abilities.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

BIBLIOGRAPHY

1. Arnold T W and Van Doorn L P. “The IBM
PCIXCC: A new cryptographic coprocessor
for the IBM eserver,” IBM J. Res. Devel, 48,
2004, 475-487.

2. Beimel A, Ishai Y, Kushilevitz E and
Raymond J F. “Breaking the O(n1/(2k-1))
barrier for information-theoretic private
information retrieval, In Proc. IEEE FOCS’,
02, 2002, 261-270.

3. Beimel A, Ishai Y and Malkin T. “Reducing
the servers computation in private
information retrieval: PIR with
preprocessing,” In Proc. CRYPTO’00, 2000,
55-73.

4. Black J and Rogaway P. “Ciphers with
arbitrary finite domains,” In Proc. CT-RSA,
2002, 114-130.

5. Chor B and Gilboa N. “Computationally
private information retrieval,” In Proc.
STOC’97, 29th, 1997, 304-313.

Please cite this article in press as: D. Rajesh and D. Ramesh. Access Pattern using Database Information not Present
in Cache, International Journal of Engineering and Robot Technology, 1(1), 2014, 36 - 40.

